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Abstract: Mass spectrometry is a fundamental tool for modern proteomics. The increasing 

availability of mass spectrometry data paired with the increasing sensitivity and fidelity of the 

instruments necessitates new and more potent analytical methods. To that end, we have created 

and present XFlow, a feature detection algorithm for extracting ion chromatograms from MS1 LC-

MS data. XFlow is a parameter-free procedurally agnostic feature detection algorithm that utilizes 

the latent properties of ion chromatograms to resolve them from the surrounding noise present in 

MS1 data. XFlow is designed to function on either profile or centroided data across different 

resolutions and instruments. This broad applicability lends XFlow strong utility as a one-size-fits-

all method for MS1 analysis or target acquisition for MS2. XFlow is written in Java and packaged 

with JS-MS, an open-source mass spectrometry analysis toolkit.  
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Introduction 

 

Mass spectrometry is a popular approach for measuring the sample-bound content and quantity of 

a variety of classes of molecules across a broad range of applications including pharmaceuticals, 

forensics, biochemistry, and food science. All applications of mass spectrometry have a common 

problem: the instrument itself does not provide measurements of molecules nor their identities, but 

rather produces raw data that must be rendered human-interpretable through the application of data 

processing algorithms. 

 

According to community perceptions, advancements in software have lagged behind the steady 

pace of instrumentation advancements.1 Unlike other computational science fields (such as 

genomics) where several foundational computational problems are regarded as solved, most mass 

spectrometry users feel that significant problems in computational mass spectrometry remain 

unsolved1 despite (in some cases) dozens of published algorithms designed to address them.2 
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Beyond user sentiment, the experimental influence of algorithm selection suggests that the analysis 

and advancement of computational mass spectrometry algorithms is a valuable pursuit.3 

 

Mass spectrometry systems generate datasets that quantify counts of charged particles at specific 

mass-to-charge (m/z) values. In liquid chromatography-mass spectrometry (LC-MS) systems, 

these measurements are taken over the time (retention time or RT) required for the molecules to 

elute from a chromatography column designed to slow or speed the migration of the molecules 

depending on particular physico-chemical properties such as size, or polarity. 

 

Mapping the raw LC-MS data points to particular classes of molecule (say, a particular peptide at 

a particular charge state) provides both an accurate count of the relative abundance of that molecule 

class (through integrating the intensities in those points) and discriminatory information about the 

identity of the molecule, as the charge state and uncharged mass can be derived through the m/z 

gap present between isotopic-specific sub-signals (extracted ion chromatograms or XICs) in the 

molecule’s signal (see Figure 1). 
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Some existing algorithms attempt to resolve the features directly from the point data (e.g. OpenMS 

FFC4). Other algorithms split this process into two steps. First, two step algorithms cluster points 

into XICs, sometimes called isotopic traces (or features5). Second, by clustering XICs into isotopic 

envelopes (sometimes also called features5) (see Figure 1). This two stage approach maximizes 

the utilization of available information, and serves to reduce the amount of data by allowing a 

summary of each XIC to be used to find isotopic envelopes instead of cumbersome point data.  

Figure 1: In this figure are five extracted ion chromatograms (XIC) bounded by yellow 

rectangles. Each XIC is composed of points, each with m/z, RT and intensity (denoted by color 

and height on z axis).  Each XIC is the evidence of an isotope of a specific molecule. The group 

of five XICs is referred to as an isotopic envelope, or feature, seen bounded by the red rectangle.  
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This manuscript presents XFlow, a novel algorithm for extracting ion chromatograms from LC-

MS data. XFlow outperforms existing XIC algorithms evaluated recently on a benchmark human-

curated dataset and provides qualitative evidence in support of high-function on alternative 

datasets. The output of XFlow can be used in conjunction with the XIC clustering algorithm XNet6 

to map raw data points from an LC-MS run into the signal groups corresponding to particular 

molecules at particular charge states. 

 

A recent XIC benchmark study7 noted that Massifquant8, a Kalman filter-based XIC algorithm, 

performed well against other popular algorithms on a large set of hand-annotated XICs. 

Massifquant uses a Kalman filter to model XICs as time-series events where the probability of 

membership of a proximate point in the next scan is a factor of the m/z of previous points in the 

putative XIC. Massifquant has several drawbacks. It has a very large possible parameter space, 

takes considerable time to run, and lacks an objective or automatic approach to optimize 

parameters. Still, it outperformed all other evaluated algorithms on a large human-curated dataset. 

 

Perhaps the principle theoretical advantage of Massifquant is that it attempts to assemble point 

membership in XICs as a function of the probability of a given point being a member of a given 

proto-XIC.  

 

XFlow adopts a similar probabilistic approach to constructing XICs. However, it does so with two 

notable differences. First, the order of the point assembly runs from most intense to least intense 

instead of from last in retention time to first. Second, the probability function is directly calculable, 
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and does not depend on Kalman filters, which require large matrices that are expensively updated 

for every point. 

 

XFlow is the first algorithm that leverages intensity order to iteratively construct XICs. Other 

algorithms use less rich sources of information. Shape filters (for example, matchedFilter9 and 

centWave10) tend to degrade at lower intensities and are expensive to optimize for each signal in 

a run. Massifquant8 and MaxQuant11 both build XICs scan by scan, though in reverse order. Due 

to the Gaussian shape of XICs, this guarantees that the least confident information is the most 

relied upon in both of these algorithms, ensuring suboptimal performance. 

 

The core idea of XFlow is the hypothesis that the most intense points in a mass spectrometry run 

also have the most accurate m/z measurement. Therefore, intensity of a point can be used as a 

surrogate for confidence. XFlow leverages this assumption to build XICs starting with the highest 

intensity points as seeds for putative XICs.  

 

Methods 

XFlow casts ion chromatogram extraction as a clustering problem, where points are clustered into 

XICs. XFlow creates an initially unlinked graph where each point from an .mzml file (either 

centroid or profile) becomes a vertex. XFlow groups points together in order of descending 

intensity by creating links between points nearby in space and intensity. The growing clusters are 

referred to as “XIC trees”, as each cluster is unique and acyclical in the graph. Due to the 

relationship between intensity and confidence, each XIC tree is initiated with the highest 

confidence possible. 
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Unlike most XIC algorithms, XFlow is designed to be agnostic to instrument and to whether the 

data is centroided or profile. Unlike any published XIC algorithm, it is also parameter-free. XFlow 

self-calibrates based on three parameters automatically derived from each run: minimum m/z 

separation, minimum RT separation, and a two-dimensional grid of the standard deviation of the 

intensity across the file. The minimum m/z separation between any two points belonging to the 

same scan is a proxy for the resolution of the machine, and the minimum RT separation between 

two consecutive scans is a proxy for sampling-rate of the machine. The two-dimensional grid of 

standard deviation of intensities is used by XFlow to determine a points candidacy by comparison 

with its neighbors, and not across the file as a whole.  

 

Using the two-dimensional grid of intensity standard deviation, XFlow determines whether each 

point (pi) in the set of all points (P) is permitted to enter into consideration and initiate an XIC tree. 

The justification for this thresholding is two part. The primary consideration of thresholding is to 

limit the admission of noise into the final output, while the secondary consideration is to reduce 

the computational burden to only the relevant subset of the data. The study of when and where to 

apply intensity thresholding is an ongoing and varied topic of research due to the difficulty of 

avoiding bias, limiting noise inclusion, and maximizing signal inclusion.12 For a pi to be 

considered, its intensity must be at least one standard deviation above the mean for its 

neighborhood for centroid data, and at least three standard deviations above the mean for profile 

data. For each pi in consideration, a window of comparison within which to compare nearby points 

must be constructed. This window of comparison is constructed using the sampling rate and 

resolution calculated previously to define an arbitrarily large window such that each pi will be 
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compared with all nearby points that could be in the same XIC. The justification for defining such 

a window is purely in the pursuit of limiting the computation required to just the relevant points. 

The set of points within this window of comparison will be referred to as W.  Once the set of points 

W with which to compare to each pi has been obtained, the linking process between pi and all 

points in W begins, and each point (wj) in W is considered in order of increasing distance from pi. 

For each wj linked to pi, the difference between pi and wj scaled by their distance is subtracted from 

pi’s intensity. In this way, the linking process is driven by pi’s intensity, with larger intensity values 

resulting in more links. The formula for the effect on pi’s intensity for each link can be seen below 

in equation 1.  

 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝1,𝑡) = 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝1,𝑡−1) − |(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝1,𝑡−1) − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑤1)) ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖, 𝑤𝑗)|  

 

As links are added between pi and points (wj) in W, XFlow updates the group id of wj to the id of 

pi. This problem maps to the Union Find problem, with an efficient solution in the form of WQU 13. If it 

is the case that pi and a wj belong to the same formative XIC as determined by a shared canonical 

point, their candidacy is stripped and the next point (wj+1) is brought up for consideration. In this 

way XFlow avoids cycles which can cause problems for resolving subgraphs later. Given that 

intensity is equivalent to likelihood of participance in an XIC for a point, we can record confidence 

in any given link as a function of the difference of pi‘s intensity before and after linking the point 

divided by its intensity before linking (see Eq 2). A high confidence point is one that is near in 

space, and similar in intensity.  

 

(1) 
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𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝1,𝑡−1) − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝𝑖,𝑡)

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝𝑖,𝑡−1)
 

 

This value is stored such that each link in question has an associated confidence that is a function 

of the nearness in both intensity and Euclidean distance (given that the difference is scaled by their 

distance) (see Figure 2). The confidence of each link is used for visualization, but as yet does not 

affect the composition of the XIC.  

 

Figure 2: This figure details the progression of the linking process for a group of points from 

inception to near completion. In the figure, you can see the completely unlinked group of points 

that form an XIC (1).  Next, the highest intensity point in the group is linked to points with its 

window of comparison (2). This process continues with the next point, and then the next in 

descending order of intensity. (3-6). Until all points above the intensity threshold have been 

recovered (7). Note the confidence (eq 2)  of each link, denoted by color. Green links approach 

1.00, while red links approach 0. With orange and yellow in between.   

 

Once XFlow has considered all points (wj) in W for each pi, or exhausted pi’s intensity, it begins 

the last step, resolving XICs. XFlow resolves XICs by recovering subgraphs created by the points. 

The subgraphs are elucidated by iterating over all points and adding any XIC with more than five 

points to the database.  

 

(2) 
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Algorithmic performance is evaluated on a hand-annotated dataset14 from a recent study that 

presented over 57,000 XICs from a public LC-MS dataset15 (UPS2).  XFlow was compared to the 

algorithms centWave10, matchedFilter9, and MZmine216, selected for comparison as equivalent 

open source algorithms. Accurate evaluation with respect to the hand annotated dataset required 

point by point comparison. For the chosen algorithms, point data was recovered using the window 

output that each provided.   

For an XIC to be considered appropriately extracted, it must be matched to a corresponding hand 

annotated XIC. For the purposes of determining accuracy, we will refer to the set of points 

constituting an XIC produced by the software as A while the set of points constituting an XIC 

produced by hand annotation will be H. For an XIC to be considered correctly recovered, the sum 

of the intensity of the intersection of points between A and H must constitute greater than fifty 

percent of the sum of the intensity of the points in the hand annotated XIC (H). This fraction of 

shared intensity will be referred to as S (Eq 3). 

 

𝑆 =  
∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐴 ⋂ 𝐻)

∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦( 𝐻)
 

 

Results 

 

We compared XFlow to several popular publicly available and functionally equivalent algorithms. 

XCMS’s centWave10 and matchedFilter9 algorithms (optimized using Isotopologue Parameter 

Optimization17) and Mzmine216. Due to the difficulty of obtaining verified XIC datasets, 

quantitative validation of algorithmic results for XFlow, centWave, matchedFilter and MzMine2 

(3) 



www.manaraa.com

 

 10 

are limited to the UPS2 dataset, the only dataset with hand annotated XICs. Five other reference 

or standard datasets were selected from the PRIDE repository: PXD000790, PXD000792, 

PXD003236, PXD008952, PXD011194. These additional files were selected in order to provide 

qualitative information. The RAW files were processed using ProteoWizard’s msConvert18 

(Version: 3.0.19277-b582d79cd) to create centroided and profile .mzml files using vendor 

centroiding algorithms. Percent recovery of the hand annotated dataset for each algorithm can be 

seen in Figure 3. 

 

 

Figure 3: Percentage of XICs shared between hand annotated dataset, and from the set of XICs 

output by each algorithm recovered from the UPS2 dataset. Note the relatively low accuracy of 

XIC recovery across all algorithms, XFlow recovering the most with nearly 40%. 

 

 

By observing Figure 3, it is apparent that XFlow returns many more XICs from the UPS2 dataset 

than do the other algorithms chosen. XFlow also manages to recover results closer to hand 
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annotation than the other algorithms.  The reason for this is likely the specific method of intensity 

thresholding XFlow employs, automatically allowing adjustments for each region of the file to be 

made. Additionally, the difference between signal intensity and noise intensity in the UPS2 dataset 

is not as great as in other files, and likely the cause of the relatively poor performance across all 

but XFlow. This relative “flatness” with respect to the other files means that fewer features stand 

out, providing XNet with its locality depended thresholding an advantage at picking out low 

intensity signals.  

 

The total number of XICs found in the UPS2 dataset for each algorithm can be seen in Figure 4. 

 

Figure 4: The total number of XICs in the set of XICs returned from each algorithm from the UPS2 

dataset. Note the dramatically increased number of XICs by XFlow compared to existing 

Algorithms.  
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The characteristics of a high quality XIC are contiguity along retention time (RT), narrow span 

along the m/z axis, and a unimodal distribution of intensity along the RT axis. Exemplary XICs 

from each algorithm on the UPS2 data are shown in Figures 5-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5: Selected result of XFlow on the hand annotated data in top-down, 3d and 

spectral views. All XICs in window are fully formed, and the extent of the XICs in 

the RT dimension are captured.  Note that intensity is not unimodal, and likely a 

result of another envelope overlapping and adding its intensity to the XICs seen. All 

algorithms failed to recover these overlapped XICs. 
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 Figure 6: Selected result of MzMine on the hand annotated data in top-down 3d 

and spectral views. Most XICS in window are fully formed, and XICs extend in the 

RT dimension to their full extent.  Some of the low intensity XICs have been 

skipped over, as mzMine2 has apparently set the intensity threshold too high to 

accurately capture all the signals. Like XFLow, MzMine2 has failed to recognize 

the overlapping signals shown here.  
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 Figure 7: Selected result of matchedFilter on the hand-annotated data in top-down, 

3d and spectral views.  One XIC in the center has been completely skipped. Several 

XICs extend too far in the m/z dimension.  XICs do not extend fully in the RT 

dimension.  
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The number of XICs recovered from alternative datasets for both centroid and profile data can be 

observed in Figures 9 and 10. 

 

 

 

Figure 8: Result example of centWave in top-down, 3d and spectral views. One 

XIC in the center has been completely skipped. Some XICs extend too far in the 

m/z dimension as before with matchedFilter. XICs also do not fully extend in RT 

dimension. 
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  Figure 9: The number of XICs reported by each algorithm for each centroided dataset.  Note the 

much larger set of XICs returned from XFlow for the UPS2 data set in comparison to other 

algorithms, and other files. Qualitative analysis suggests XFlow is very sensitive and recovers very 

low intensity signals in UPS2.  

 

 

 Figure 10: The number of XICs reported by each algorithm for each profile dataset.  Note some 

disparity among mzMine2 and XFlow between centroid (Figure 9) and profile datasets. Disparity 

between profile and centroid, while expected, is not desirable. Ideally, the centroid and profile 

datasets will have the exact same number of signals as they come from the same source. XCMS’s 
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matchedFilter and centWave excelled at recovering the similar numbers of XICs from profile and 

centroided versions of the datasets.  

 

 

XCMS’ matchedFilter and centWave performed similarly in relation to each other. This is likely 

due to the common origin of the algorithms, and IPO’s optimization strategy. CentWave and 

matchedFilter also had the most similar results between centroid and profile data (Figures 9-10), 

also likely attributable to IPOs parameter optimization strategy. The downside of employing IPO 

is its very lengthy runtime.  Further, while centWave and matchedFilter recovered a greater number 

of the hand annotated XICs, they recovered far fewer XICs from the alternative datasets, 

qualitatively suggesting that they fail to recover lower intensity signals, an observation that can be 

verified by analyzing images from PXD011194 dataset to provide qualitative evaluation and 

comparison between algorithms tested. (See Figures 11-14). 
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Figure 11: XFlow wide scale (left) and XFlow feature scale (right). It is clear that XFlow has 

self-adjusted the intensity slightly too high, and as a result is missing clearly present XICS 

(left). Further, XFlow incorrectly splits the leading XIC in the feature view (right) into two 

XICs. However, the XICs are well formed, and fully extended, having captured all relevant 

points. 

Figure 12: MzMine2 wide view (left) and feature view (right). The left view gives the 

illusion that MzMine2 is selecting for everything not an XIC, however the feature view 

(right) shows that MzMine2 is finding the XICs, but fails to capture many of the points in 

those XICs. 
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Figure 14: centWave wide view (left) and feature view (right). The left view shows that 

centWave  manages to return several of the XICs. Like matchedFilter, centWave failed to find 

most of the points in the XICs in the feature view (right), but found several peaks. 

Figure 13: matchedFilter wide view (left) and feature view (right). The left view shows that 

matchedFilter manages to return several of the XICs. MatchedFilter failed to find most of the 

high intensity points in the feature view (right), but found several of the peaks. 
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Additionally, it was observed that centWave and matchedFilter both harbor a tendency to over and 

under select around regions of interest (Figures 13-14). Additionally, with the prevalence of large 

datasets, the runtime of these algorithms is vitally important for their continued feasibility in the 

future. These runtimes can be seen below in Figure 15 (note log scale).  

 

 

 

 

 

Discussion 

 

Figure 15: This chart shows the log scaled runtimes for each of the algorithms in seconds on the 

smallest dataset (PXD000792-Centroid). CentWave took the longest at ~18000 seconds 

(approximately 5 hours),   matchedFilter and MzMine2 took nearly the same at about 5 minutes. 

XFlow took approximately a minute and a half. Note that the time consuming part of centWave 

and matchedFilter is the parameter optimization which necessitates repeated trials to obtain 

optimal results.  
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The results of this study have brought to light several interesting and key features of the ability of 

the evaluated algorithms to recover XICs from LC-MS data sets.  

MZmine2 was the most permissive of the algorithms tested, resulting in the most XICs recovered 

compared to the other algorithms (except for XFlow and UPS2) but failed to recover many XICs 

for the UPS2 dataset, recovering only 18%. Additionally, MZmine2 suffered some disparity 

between centroided and profile datasets, particularly on PXD000792, a particularly small and low-

resolution file. MZmine2 can be qualitatively observed to be too permissive, as many noise points 

are included as signals (Figure 12), additionally, signal points are often excluded from 

classification. 

Considering the total number of XICs collected for each algorithm with respect to each data file, 

it is clear here that the UPS2 dataset has interesting qualities in relation to the other datasets (Figure 

4). XFlow returned the most hand annotated XICs between any algorithm, and MzMine2 returned 

far fewer XICs from the UPS2 dataset than any other file, this disparity seems only attributable to 

something inherent in the dataset itself, likely as mentioned before, the relatively small difference 

between the signal intensity, and the background noise intensity in the dataset.  

The runtime of the algorithms is highly disparate, and the challenges of optimizing a highly 

parameterized algorithm such as centWave (Even using an automated tool like IPO) is 

prohibitively time consuming for larger datasets. It is feasible to reuse optimized parameters, but 

doing so is likely to return suboptimal results.  In this way, it is clear that parameterless approaches 

will excel.  

Conclusion 

The size of the datasets, the complexity of the signals, and the noise obfuscation make XIC 

acquisition from MS1 data extremely challenging. The general method to account for complexity 
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has been to include parameters to increase the scope of an individual algorithm. It was our goal in 

our lab to reduce complexity, and simplify the experience of conducting MS1 analysis by 

designing XFlow in a procedurally agnostic way such that it works on a wide variety of MS1 

datasets without parameter modification regardless of centroiding or instrument type, a goal that 

is now accomplished. It’s clear that XFlow excels at signal acquisition for the UPS2 dataset in 

particular and performs favorably with respect to other algorithms in signal acquisition from 

alternate datasets (Figures 11-14). Additionally, while qualitative information is gained by 

comparing results for alternative datasets, it’s impossible to quantitatively evaluate the 

performance of the algorithms for datasets that do not have a hand annotated version. To this end, 

developing a database of a variety of hand annotated datasets with which to evaluate algorithms 

remains a valuable endeavor, in order to provide additional sources of comparison beyond UPS2. 
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